Топливо. Виды топлива и устройства для его сжигания

1. Общие сведения

Органическое топливо (газообразное, жидкое и твердое) широко используют в разного рода тепловых установках: в топках паровых и водогрейных котлов, в том числе паротурбинных электростанций, в промышленных печах и в сельском хозяйстве, в камерах сгорания газовых турбин и воздушно-реактивных двигателей, в цилиндрах поршневых двигателей внутреннего сгорания, в камерах сгорания магнитогазодинамических электрогенераторов и т. д.

Топливо в любых теплотехнических установках сжигают для того, чтобы получить теплоту в результате протекания экзотермических химических реакций и получить раскаленные продукты полного сгорания (дымовые газы) или продукты газификации.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

В топках паровых котлов, в промышленных печах (кроме шахтных печей), в двигателях внутреннего сгорания, в камерах сгорания газовых турбин горение ведут с наибольшей полнотой, получая продукты полного сгорания.

В газогенераторах осуществляют газификационные процессы, в которых в качестве окислителей используют кислород, воздух, водяной пар и углекислый газ. Реакции, протекающие в таких устройствах, едины по своей природе с реакциями горения, но в результате их получают горючие газообразные продукты газификации.

Топливо. Виды топлива и устройства для его сжигания

Бывает и двухстадийное сжигание топлива: 1 – сначала топливо газифицируется; 2 – затем (в том же устройстве) продукты газификации полностью дожигаются.

Условия сгорания топлива в разных теплотехнических устройствах и подготовка их к сжиганию различны, как различны и сами топлива. Например, в топках паровых и водогрейных котлов и в промышленных печах топливо сгорает при атмосферном давлении, в то время как в камерах сгорания газовых турбин и в цилиндрах двигателей внутреннего сгорания топливо горит при давлении, во много раз превышающем атмосферное.

6. Особенности горения жидкого топлива

Основным жидким топливом, используемым в настоящее время, является мазут. В установках небольшой мощности используется также печное топливо, представляющее собой смесь технического керосина со смолами. Наибольшее практическое применение имеет метод сжигания жидкого топлива в распыленном состоянии. Распыление топлива позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем.

Температура кипения жидких топлив всегда ниже температуры их самовоспламенения, т. е. той минимальной температуры среды, начиная с которой топливо воспламеняется и затем горит без постороннего теплового источника. Эта температура выше, чем температура воспламенения, при которой топливо горит только в присутствии постороннего источника зажигания (искры, раскаленной спирали и т. п.).

Процесс сжигания жидкого топлива включает следующие этапы: 1 – пульверизации (распыливания) при помощи форсунок; 2 – испарения и термического разложения топлива; 3 – смешения полученных продуктов с воздухом; 4 – воспламенения смеси; 5 – собственно горения.

Цель пульверизации заключается в увеличении поверхности соприкосновения жидкости с воздухом и газами. Поверхность при этом возрастает в несколько тысяч раз. За счет сильного излучения горящего факела капельки очень быстро испаряются и подвергаются термическому разложению (крекингу).

Капля жидкого топлива, попавшая в нагретый объем, температура которого выше температуры самовоспламенения, начинает частично испаряться. Пары топлива смешиваются с воздухом, и образуется паровоздушная смесь. Воспламенение происходит в тот момент, когда концентрация паров в смеси достигнет величины, превышающей ее значение на нижнем концентрационном пределе воспламенения.

Горение затем поддерживается самопроизвольно за счет теплоты, получаемой каплей от сжигания горючей смеси. Начиная с момента воспламенения скорость процесса испарения, возрастает, так как температура горения горючей паро-воздушной смеси значительно превышает начальную температуру объема, куда вводится распыленное топливо.

https://www.youtube.com/watch?v=ytabouten-GB

Таким образом, горение жидкого топлива характеризуется двумя взаимосвязанными процессами: испарением топлива вследствие выделения теплоты от горящей паро-воздушной смеси и собственно горением этой смеси около поверхности капли. Гомогенное горение паровоздушной смеси – это химический процесс, а процесс испарения является по своей природе физическим. Результирующая скорость и время горения жидкого топлива будут определяться интенсивностью протекания физического или химического процесса.

При сжигании жидкого топлива факел состоит из трех фаз: 1 – жидкой; 2 – твердой (дисперсный углерод от разложения жидких углеводородов); 3 – газообразной.

Скорость горения, как и при сжигании горючих газов, зависит от условий смесеобразования, степени предварительной аэрации, степени турбулентности факела, температуры камеры сгорания и условий развития факела. Высокомолекулярные углеводородные газы, разлагаясь при высоких температурах на простые соединения, выделяют сажистый углерод, размеры частичек которого очень малы (~ 0,3 мкм).

Эти частицы, раскаляясь, обеспечивают свечение пламени. Можно снизить светимость пламени тяжелых углеводородов. Для этого следует осуществить частичное предварительное смешение, т. е. подать в форсунку некоторое количество воздуха. Кислород изменяет характер разложения органических молекул: углерод выделяется не в твердом виде, а в виде окиси углерода, горящей синеватым прозрачным пламенем.

Если скорость сгорания образующихся паров значительно превышает скорость испарения топлива, то за скорость горения принимают скорость испарения и тогда  τгор = τфиз τхим.

В противном случае, когда скорость химического взаимодействия паров с окислителем значительно ниже скорости испарения топлива, интенсивность процесса сжигания будет целиком зависеть от скорости протекания химических реакций горения паро-воздушной смеси и испарение капли – наиболее длительная стадия горения жидкого топлива. Поэтому для успешного и экономичного сжигания жидкого топлива необходимо увеличивать дисперсность распыления.

Жидкие топлива представляют собой вещества органического происхождения. Основные составляющие элементы жидких топлив: углерод, водород, кислород, азот и сера, которые образуют многочисленные химические соединения.

Углерод (С) – основной тепловыделяющий элемент: при сгорании 1 кг углерода выделяется 34 000 кДж теплоты. В мазуте содержится до 80 % углерода, образующего различные соединения.

Водород (H) – второй наиболее важный элемент жидкого топлива: при сгорании 1 кг водорода выделяется 125 000 кДж теплоты, т.е. почти в 4 раза больше, чем при сгорании углерода. В жидких топливах имеется ~10 % водорода.

Азот (N) и кислород (О2) содержатся в жидком топливе в небольших количествах (~3 %). Они входят в состав сложных органических кислот и фенолов.

Сера (S) обычно присутствует в углеводородах (до 4 % и более). Она является вредной примесью в топливе.

В состав жидкого топлива также входят влага и до 0,5 % золы. Влага и зола уменьшают процентное содержание горючих составляющих жидкого топлива, что снижает его теплотворность.

3. Гомогенное горение. Кинетика химических реакций

Процессы горения делят на гомогенные, протекающие в объеме, когда топливо и окислитель находятся в одинаковом фазовом состоянии (например, горение водорода в смеси с воздухом), и на гетерогенные, происходящие на поверхности твердого углерода (например, горение кокса в потоке воздуха). В указанных реакциях горения окислителем является сухой воздух, состоящий по объему примерно из 21% кислорода и 79% азота, и поэтому продукты сгорания содержат балласт – азот, который их разбавляет. При использовании в качестве окислителя чистого кислорода балласт будет отсутствовать.

Во всех теплотехнических установках стремятся к проведению процессов горения с наибольшей скоростью, потому что это позволяет создать малогабаритные машины и аппараты и получить в них наибольшую производительность. Процессы горения в существующих установках протекают с большой скоростью с выделением при сгорании топлива большого количества теплоты и с получением высоких температур. Для лучшего понимания влияния разных факторов на скорость горения ниже рассмотрены элементы кинетики химических реакций.

Скорость любой химической реакции зависит от концентрации реагирующих веществ, температуры и давления. Объясняется это тем, что молекулы газов, двигаясь в разных направлениях с большой скоростью, сталкиваются друг с другом. Чем чаще их столкновения, тем быстрее протекает реакция. Частота же столкновений молекул зависит от их количества в единице объема, т. е.

2. Газообразное топливо

Газообразное топливо – это смесь различных газов: метана, этилена и других углеводородов, оксида углерода, диоксида углерода или углекислого газа, азота, водорода, сероводорода, кислорода и других газов, а также водяных паров.

Метан (CH4) – основная составляющая часть многих природных газов. Его содержание в природных газах достигает 93…98 %. При сгорании 1 м3 метана выделяется ~35 800 кДж теплоты.

В газообразных топливах также может содержаться небольшое количество этилена (С2H4). Сгорание 1 м3 этилена дает ~59 000 кДж теплоты.

В газообразном топливе кроме метана и этилена присутствуют также углеводородные соединения, например пропан (С3H8), бутан (С4H10) и др. При горении этих углеводородов выделяется больше теплоты, чем при сгорании этилена, но в горючих газах их количество незначительно.

Водород (H2) в 14,5 раза легче воздуха. При сгорании 1 м3 водорода выделяется ~10 800 кДж теплоты. Многие горючие газы, кроме коксового, содержат относительно небольшое количество водорода. В коксовом газе его содержание может достигать 50…60 %.

Предлагаем ознакомиться  Инфракрасный обогреватель для растений

Оксид углерода (СО) – основная горючая составляющая доменного газа. При сгорании 1 м3этого газа образуется ~12 770 кДж теплоты. Этот газ не имеет ни цвета, ни запаха и очень ядовит.

Сероводород (H2S) – тяжелый газ с неприятным запахом, отличается высокой токсичностью. При наличии в газе сероводорода повышается коррозия металлических частей печи и газопровода. Вредное действие сероводорода усиливается наличием в газе кислорода и влаги. При сгорании 1 м3 сероводорода выделяется ~23 400 кДж теплоты.

https://www.youtube.com/watch?v=ytpressen-GB

Остальные газы: СО2, N2, О2 и пары воды – балластные составляющие, так как при повышении содержания этих газов в топливе снижается содержание его горючих составляющих. Их присутствие приводит к снижению температуры горения топлива. Содержание в газообразном топливе >0,5 % свободного кислорода считается опасным по условиям техники безопасности.

Процесс горения газообразного топлива гомогенный, т. е. и топливо, и окислитель находятся в одном агрегатном состоянии и граница раздела фаз отсутствует. Для того, чтобы началось горение, газ должен соприкасаться с окислителем. При наличии окислителя для начала горения необходимо создать определенные условия.

При достижении некоторой температуры газо-воздушная смесь воспламеняется, скорости реакций резко возрастают и количество теплоты становится достаточным для самопроизвольного поддержания горения. Минимальная температура, при которой происходит воспламенение смеси, называется температурой воспламенения.

Структура фронта горения факелов

Значение этой температуры для различных газов неодинаково и зависит от теплофизических свойств горючих газов, содержания горючего в смеси условий зажигания, условий отвода теплоты в каждом конкретной в устройстве и т. д. Например, температура воспламенения водорода находится в пределах 820-870 К, а окиси углерода и метана – соответственно 870-930 К и 10201070 К.

Горючий газ в смеси с окислителем сгорает в факеле. Факел – некоторый определенный объем движущихся газов, в котором протекают процессы горения. В соответствии с общими положениями теории горения различают два принципиально различных метода сжигания газа в факеле – кинетически и диффузионный. Для кинетического сжигания характерно предварительное (до начала горения) смешивание газа с окислителем.

Диффузионное горение происходит в процессе смешивания горючего газа с воздухом. Газ поступает в рабочий объем отдельно от воздуха. Скорость процесса в данном случае будет ограничена скоростью смешивания газа с воздухом и τгор < τфиз.

Разновидностью диффузионного горения является смешанное (диффузионно-кинетическое) горение. Газ предварительно смешивается с некоторым (недостаточным для полного горения) количеством воздуха. Этот воздух называется первичным. Образовавшаяся смесь подается в рабочий объем. Туда же отдельно от нее поступает остальная часть воздуха (вторичный воздух).

В топках котельных агрегатов чаще используются кинетический и смешанный принципы сжигания топлива. Диффузионный способ чаще всего используется в технологических промышленных печах.

Структура и длина факела при прочих равных условиях зависит от режима потока. Различают ламинарный и турбулентный газовые факелы. Ламинарный факел образуется при небольших скоростях истечения смеси (Re < 2300). Ламинарный режим сохраняется только на некотором расстоянии от среза горелки. Затем из-за процессов массообмена с окружающей средой происходит турбулизация факела. При Re > 3000 факел турбулентен уже около среза горелочного устройства.

Горение газа происходит в узкой зоне, называемой фронтом горения. Газ, предварительно перемешанный с окислителем, сгорает во фронте горения, который называется кинетическим. Этот фронт представляет собой поверхность раздела между свежей газо-воздушной смесью и продуктами сгорания. Площадь поверхности кинетического фронта горения определяется скоростью химических реакций.

Топливо. Виды топлива и устройства для его сжигания

В случае диффузионного сжигания газа образуется диффузионный фронт горения, который является поверхностью раздела между продуктами сгорания и смесью газа с продуктами сгорания, диффундирующими навстречу потоку газа. Площадь поверхности этого фронта определяется скоростью смешивания газа с окислителем.

Диффузионно-кинетическое сжигание газа характеризуется наличием двух фронтов. При кинетическом сжигании расходуется окислитель, подаваемый в смеси с газом, при диффузионном догорает та часть газа, которая не сгорела при кинетическом сжигании из-за недостатка окислителя.

На рис. 1 показана структура горящих факелов при различных способах сжигания горючего газа и схема фронта горения.

https://www.youtube.com/watch?v=https:fXQ5OGwhleU

Рис. 1. Структура фронта горения факелов: кинетического (а), смешанного (б) и диффузионного (в), а также схема фронта горения

Набегающая свежая газо-воздушная смесь нагревается за счет передачи теплоты путем теплопроводности и излучения от фронта горения. Подогретая до температуры воспламенения смесь сгорает во фронте горения, а продукты сгорания покидают эту зону и частично диффундируют в набегающую смесь. Положение фронта горения над срезом горелки зависит от физической природы горючего газа, концентрации его в смеси, скорости потока и других факторов.

Фронт горения может перемещаться в направлении, нормальном к своей поверхности, до установления равенства между количествами сгоревшей и поступившей смеси, отнесенными к единице поверхности фронта. При этом выполняется и тепловое равновесие: поток теплоты от фронта горения уравновешивается встречным потоком переносимого холодного исходного газа.

Важнейшей характеристикой горения газообразного топлива является скорость нормального распространения пламени скорость, с которой перемещается фронт горения по нормали к своей поверхности в направлении набегающей газо-воздушной смеси. При равенстве на и проекции вектора скорости потока на нормаль к поверхности фронта этот фронт будет неподвижным по отношению к срезу горелки.

Реакционная способность газа определяется величиной энергии активации. Очевидно, что газы, обладающие небольшой энергией активации, реагируют с окислителем с большей скоростью, и для этих газов характерны высокие скорости распространения пламени (водород, ацетилен). Количество теплоты, выделяемой при горении, и температура во фронте горения зависят от концентрации газа и смеси.

Начальный подогрев смеси увеличивает температуру во фронте. Если скорость истечения смеси будет значительно превосходить скорость распространения пламени, то может произойти отрыв факела. Если скорости истечения значительно меньше скоростей распространения пламени, то наблюдается втягивание (проскок) пламени в горелку.

3. Топливосжигающие устройства

Сгорание топлива (газообразного, жидкого) осуществляют с помощью специальных топливосжигающих устройств: горелок и форсунок.

Горелки для газа и форсунки для мазута предназначены для ввода топлива и воздуха в топку или рабочее пространство печи, перемешивания горючего с кислородом и воспламенения горючей смеси. Основная задача топливосжигающих устройств – обеспечение условий образования горючей смеси топлива с воздухом. Смесеобразование осуществляется путем молекулярной и турбулентной диффузии.

Процесс горения мазута более сложен, чем процесс горения газообразного топлива. При горении жидкого топлива можно выделить следующие стадии: распыление топлива и смешивание его с воздухом, подогрев смеси и испарение легких фракций, термическое расширение и горение газовой фазы. Горелки с предварительным перемешиванием называют беспламенными, так как при этом в рабочее пространство печи поступают продукты горения без видимого факела.

Топливо. Виды топлива и устройства для его сжигания

Широкое распространение получили беспламенные горелки с инжекционными смесителями, в которых необходимое количество воздуха для горения подсасывается благодаря энергии газа, подаваемого струей с высокой скоростью. При работе инжекционные горелки забирают холодный воздух непосредственно из помещения, подсасывая его в количестве, пропорциональном подаваемому газу. На рис. 3 приведена двухпроводная инжекционная горелка.

https://www.youtube.com/watch?v=ytcreatorsen-GB

Недостаток беспламенных горелок заключается в том, что при снижении скорости подачи смеси в тоннель печи возможен проскок пламени (отрыв его от горелки). Беспламенные горелки характеризуются концентрированным горением (коротким факелом) и непригодны для печей, где требуются растянутый факел и высокая тепловая напряженность.

Рис. 3. Двухпроводная инжекционная горелка

Рис. 4. Двухпроводная горелка малой мощности

В двухпроводных инжекционных горелках инжектирующая среда – газ, а инжектируемая – подогретый воздух. Для исключения деформации носка горелки в данной конструкции предусмотрено его охлаждение водой. Однако при всех недостатках метод беспламенного сжигания газа высокоэффективен.

Пламенные горелки осуществляют факельное сжигание топливной смеси без предварительного перемешивания газа и воздуха и работают только вследствие придания газовому и воздушному потокам необходимых скоростей и направлений. Процессы перемешивания и горения совмещены и выполняются непосредственно в рабочем пространстве печи.

Пламенные горелки оказываются более эффективными, когда в печи надо обеспечить заданное распределение температур, интенсивную теплоотдачу в рабочем объеме или заданный состав продуктов горения. Промышленность выпускает пламенные горелки двух типов: с частичным внутренним перемешиванием (тип ГНП), рассчитанные на сжигание природного газа с теплотой сгорания 36 МДж/м3 при коэффициенте расхода воздуха α = 1,05;

При нагреве металла в среде защитного газа не допускается попадания в нее продуктов горения и поэтому печи должны иметь косвенный обогрев. Это достигается муфелированием (защитой) нагреваемого металла, что связано с большим расходом окалиностойкой стали, или муфелированием пламени.

Муфелирование пламени (в бесмуфельных печах) осуществляется радиационными трубами. Каждая радиационная труба – это независимый нагреватель, внутри которого происходит сжигание топлива – преобразование химической энергии в тепловую.

Предлагаем ознакомиться  В каких продуктах содержатся минеральные вещества

Топливо. Виды топлива и устройства для его сжигания

Передача теплоты проводится сложным путем. Так, передача теплоты от продуктов сгорания непосредственно к стенкам трубы выполняется путем радиационноконвективного теплообмена, а от трубы к нагреваемым заготовкам – в основном радиацией, откуда и название этого вида нагревателей – радиационные. Они обеспечивают максимальную рабочую температуру 1000…1050 °С. Удельный теплосъем с поверхности нагревателя может достигать 23…46 кВт/м2.

Радиационные трубы могут работать на газовом и жидком топливах и вместо горелок (форсунок) могут быть оборудованы электронагревателями, размещенными внутри труб. Радиационные трубы изготавливают из жаропрочных материалов диаметром 80…200 мм, с толщиной стенки 4…15 мм. Габаритные длины радиационных труб могут быть 1…3,5 м.

Рис. 5. Формы радиационных труб: а – двухкольцевая (Ф-образная); б – W-образная; в – m-образная; г – однокольцевая; д – Р-образная; е – U-образная; ж – О-образная; з – петлевая; и – L-образная; к – прямая; л – тупиковая

На рис. 5 приведены некоторые формы радиационных труб.

Мазут распыляют форсунками, которые подразделяют на высокого (паровые и воздушные) и низкого (воздушные) давления. При распылении поверхность контакта мазута с воздухом увеличивается в ~2500 раз, что значительно ускоряет нагрев капли мазута и ее испарение. Хорошее перемешивание и турбулентность потока обеспечивают полное сгорание топлива с коэффициентом расхода воздуха α до 1,2.

В форсунках высокого давления масса распылителя мала, а скорости его подачи достаточно высоки, например в некоторых конструкциях даже сверхзвуковые. В форсунках низкого давления скорости подачи распылителя значительно ниже, однако его масса больше. В форсунках низкого давления мазут распыляют воздухом, подаваемым вентилятором высокого давления.

Топливо. Виды топлива и устройства для его сжигания

Рис. 6. Форсунка высокого давления: 1 – патрубок для распылителя; 2 – центрирующие выступы мазутной трубки; 3 – мазутная трубка; 4 – соединительная гайка; 5 – контргайка

https://www.youtube.com/watch?v=ytdeven-GB

В настоящее время разработаны и широко применяются газомазутные горелки.

Они могут работать как на газе, так и на мазуте.

Рис. 7. Схема форсунки низкого давления: 1 – корпус; 2 – подвижный наконечник; 3 – мазутная трубка; 4 – мазутопровод; 5 – маховик для перемещения иглы; 6 – игла; 7 – рычаг для перемещения наконечника

В печах для нагрева металла под ковку и штамповку устанавливают меньшее число форсунок, но большей производительности, чем в термических печах, где для обеспечения равномерности нагрева необходим рассредоточенный подвод теплоты. В кузнечных печах мазутный факел может находиться непосредственно в рабочем

пространстве, в термических же печах форсунки устанавливают в закрытых топках – форкамерах, из которых продукты сгорания поступают в рабочее пространство печи.

5. Нижний и верхний пределы взрываемости горючих газов

Другая важная особенность горения газо-воздушных смесей – это наличие концентрационных пределов. Горючие газы могут воспламеняться или взрываться, если они смешаны в определенных (для каждого газа) соотношениях с воздухом и нагреты не ниже температуры их воспламенения. Воспламенение и дальнейшее самопроизвольное горение газо-воздушной смеси при определенных соотношениях газа и воздуха возможно при наличии источника огня (даже искры).

Различают нижний и верхний концентрационные пределы взрываемости (воспламеняемости) – минимальное и максимальное процентное содержание газа в смеси, при которых может произойти воспламенение ее и взрыв.

Нижний предел соответствует минимальному, а верхний – максимальному количеству газа в смеси, при котором происходят их воспламенение (при зажигании) и самопроизвольное (без притока теплоты извне) распространение пламени (самовоспламенение). Эти же пределы соответствуют и условиям взрываемости газо-воздушных смесей.

Нижний предел взрываемости отвечает той минимальной концентрации паров горючего в смеси с воздухом, при которой происходит вспышка при поднесении пламени. Верхний предел взрываемости отвечает той максимальной концентрации паров горючего в смеси с воздухом, выше которой вспышки уже не происходит из-за недостатка кислорода воздуха.

Самые широкие пределы взрываемости (воспламеняемости) имеет ряд газов: водород (4,0 – 75%), ацетилен (2,0 – 81%) и окись углерода (12,5 – 75%). Объемное содержание горючего газа в газо-воздушной смеси, ниже которого пламя не может самопроизвольно распространяться в этой смеси при внесении в нее источника высокой температуры, называется нижним концентрационным пределом воспламенения (распространения пламени) или нижним пределом взрываемости данного газа.

Если содержание газа в газо-воздушной смеси меньше нижнего предела воспламеняемости, то такая смесь гореть и взрываться не может, поскольку выделяющейся вблизи источника зажигания теплоты недостаточно для подогрева смеси до температуры воспламенения.

При содержании газа в смеси между нижним и верхним пределами взрываемости подожженная смесь загорается и горит как вблизи источника зажигания, так и при удалении его. Эта смесь взрывоопасна. А если содержание газа в смеси выше верхнего предела взрываемости, то количества воздуха в ней недостаточно для полного сгорания газа.

Существование пределов воспламеняемости (взрываемости) вызывается тепловыми потерями при горении. При разбавлении горючей смеси воздухом, кислородом или газом тепловые потери возрастают, скорость распространения пламени уменьшается и горение прекращается после удаления источника зажигания.

С увеличением температуры смеси пределы воспламеняемости расширяются, а при температуре, превышающей температуру самовоспламенения, смеси газа с воздухом или кислородом горят при любом объемном соотношении.

Пределы воспламеняемости (взрываемости) зависят не только от видов горючих газов, но и от условий проведения экспериментов (вместимости сосуда, тепловой мощности источника зажигания, температуры смеси, распространения пламени вверх, вниз, горизонтально и др.). Этим объясняются несколько отличающиеся друг от друга значения этих пределов в различных литературных источниках. При распространении пламени сверху вниз или горизонтально нижние пределы несколько возрастают, а верхние – снижаются.

Расчетное избыточное давление при взрыве таких смесей следующее: природного газа – 0,75 МПа, пропана и бутана – 0,86 МПа, водорода – 0,74 МПа, ацетилена – 1,03 МПа. В реальных условиях температура взрыва не достигает максимальных значений и возникающие давления ниже указанных, однако они вполне достаточны для разрушения не только обмуровки котлов, зданий, но и металлических емкостей, если в них произойдет взрыв.

Основной причиной образования взрывных газо-воздушных смесей является утечка газа из систем газоснабжения и отдельных ее элементов (неплотность закрытия арматуры, износ сальниковых уплотнений, разрывы швов газопроводов, негерметичность резьбовых соединений и т. д.), а также несовершенная вентиляция помещений, топки и газоходов котлов и печей, подвальных помещений и различных колодцев подземных коммуникаций.

Задачей эксплуатационного персонала газовых систем и установок является своевременное выявление и устранение мест утечек газа и строгое выполнение производственных инструкций по использованию газообразного топлива, а также безусловное качественное выполнение планово-предупредительного осмотра и ремонта систем газоснабжения и газового оборудования.

7. Горение твердого топлива (гетерогенное горение)

Для горения топлива нужно большое количество воздуха, превышающее в несколько раз по весу количество топлива. При продувании слоя топлива воздухом сила аэродинамического давления потока Р может быть меньше веса кусочка топлива G или, наоборот, больше его. В топках с «кипящим слоем» «кипение» связано с разъединением частиц топлива, что увеличивает объем слоя в 1,5-2,5 раза. Движение частиц топлива (обычно они от 2 до 12 мм) похоже на движение кипящей жидкости, почему такой слой и получил название «кипящего».

В топках с «кипящим» слоем газо-воздушный поток не циркулирует в слоевой зоне, а прямоточно продувает слой. Поток воздуха, пронизывающий слой, испытывает неоднородное торможение, что создает сложное поле скоростей, в котором частицы все время меняют свою парусность в зависимости от положения в потоке. Частицы при этом приобретают вращательно-пульсирующее движение, которое и создают впечатление кипящей жидкости.

Процесс сгорания твердого топлива может быть условно разделен на стадии, накладывающиеся одна на другую. Эти стадии протекают в разных температурных и тепловых условиях и требуют различного количества окислителя.

https://www.youtube.com/watch?v=ytcopyrighten-GB

Свежее топливо, поступающее в топку, подвергается более или менее быстрому нагреванию, из него испаряется влага и выделяются летучие вещества – продукты сухой перегонки топлива. Одновременно протекает процесс коксообразования. Кокс сгорает и частично газифицируется на колосниковой решетке, а газообразные продукты сгорают в топочном пространстве. Негорючая минеральная часть топлива при сгорании топлива превращается в шлак и золу.

8. Конструкции различных топок

Топочным устройством или топкой называют часть котельного агрегата, которая предназначена для сжигания топлива и выделения химически связанного в нем тепла. Вместе с тем топка является теплообменным устройством, в котором поверхностям нагрева отдается излучением часть тепла, выделившегося при горении топлива. Кроме того, при сжигании твердого топлива в топке выпадает некоторая часть образующейся золы.

В соответствии с видом сжигаемого топлива различают топки для сжигания твердого, жидкого и газообразного топлива. Кроме того, есть топки, в которых одновременно можно сжигать различные виды топлива: твердое с жидким или газообразным, жидкое и газообразное.

Существуют три основных способа сжигания топлива: в слое, факеле и вихре (циклоне). В соответствии с этим топки разделяют на три больших класса: слоевые, факельные и вихревые. Факельные и вихревые топки часто объединяют в общий класс камерных топок.

Предлагаем ознакомиться  Цветочные пряности это

Топливо. Виды топлива и устройства для его сжигания

Рис. 2. Классификация слоя при сжигании твердого топлива: а – плотный слой; б – «кипящий» слой; в и г – взвешенный слой (гетерогенные факелы)

В слое топливо сжигают под котельными агрегатами паропроизводительностью до 20-35 т/ч. В слое можно сжигать только твердое кусковое топливо, например: бурые и каменные угли, кусковой торф, горючие сланцы, древесину. Топливо, подлежащее сжиганию в слое, загружают на колосниковую решетку, на которой оно лежит плотным слоем. Горение топлива происходит в струе воздуха, пронизывающего этот слой обычно снизу вверх.

1 – топки с неподвижной колосниковой решеткой и неподвижно лежащим на ней слоем топлива (рис. 3, а и б);

2 – топки с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива (рис. 3, в, г);

3 – топки с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива (рис. 3, д, е, ж).

Рис. 3. Схемы топок для сжигания топлива в слое: а – ручная горизонтальная колосниковая решетка; б – топка с забрасывателем на неподвижный слой; в – топка с цепной механической решеткой; г – топка с механической цепной решеткой обратного хода и забрасывателем; д – топка с шурующей планкой; е – топка с колосниковой решеткой; ж – топка системы Померанцева

Самой простой топкой с неподвижной колосниковой решеткой и неподвижным слоем топлива является топка с ручной горизонтальной колосниковой решеткой (рис. 3, а). На этой решетке можно сжигать твердое топливо всех видов, но необходимость ручного обслуживания ограничивает область применения ее в котлах очень малой паропроизводительности (до 1-2 т/ч).

Для слоевого сжигания топлива под котлами большей паропроизводительности механизируют обслуживание топки и прежде всего – подачу в нее свежего топлива.

В топках с неподвижной решеткой и неподвижным слоем топлива механизация загрузки осуществляется применением забрасывателей 1, которые непрерывно механически загружают свежее топливо и разбрасывают его по поверхности колосниковой решетки 2 (рис. 3, б). В таких топках можно сжигать каменные и бурые угли, а иногда и антрацит под котлами паропроизводительностью до 6,5-10,0 т/ч.

К классу топок с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива, относят топки с механической цепной решеткой (рис. 3, в), которые выполняют в различных модификациях. В этой топке топливо из загрузочной воронки 1 поступает самотеком на переднюю часть медленно движущегося бесконечного цепного колосникового полотна 2, которым оно подается в топку.

https://www.youtube.com/watch?v=ytpolicyandsafetyen-GB

Топки с цепной решеткой чувствительны к качеству топлива. Лучше всего они подходят для сжигания сортированных неспекающихся умеренно влажных и умеренно зольных углей с относительно высокой температурой плавления золы и выходом летучих веществ УГ = 10-25% на горючую массу. В таких топках можно также сжигать сортированный антрацит.

Топливо. Виды топлива и устройства для его сжигания

Для работы на спекающихся углях, а также на углях с легкоплавкой золой топки с цепной решеткой непригодны. Эти топки можно устанавливать под котлами паропроизводительностью от 10 до 150 т/ч, но в России их устанавливают под паровыми котлами паропроизводительностью 10-35 т/ч главным образом для сжигания сортированного антрацита.

Для сжигания топлива большой влажности, в частности кускового торфа, цепную решетку комбинируют с шахтным предтопком, который нужен для предварительной сушки топлива. Самой распространенной шахтно-цепной топкой является топка проф. Т. Ф. Макарьева.

Другим типом топки рассматриваемого класса являются топки с цепной решеткой обратного хода и забрасывателем. В этих топках колосниковое полотно решетки движется в обратном направлении, т. е. от задней стенки топки к передней. На фронтальной стене топки размещены забрасыватели, непрерывно подающие топливо на полотно.

Выгоревший шлак ссыпается с решетки в шлаковый бункер, размещенный под передней частью топки. Топки рассматриваемого типа значительно меньше чувствительны к качеству топлива, чем топки с решеткой прямого хода, поэтому их применяют для сжигания как сортированных, так и не сортированных каменных и бурых углей под котлами паропроизводительностью 10-35 т/ч.

Топки с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива основаны на различных принципах организации процессов движения и горения топлива. В топках с шурующей планкой топливо перемещается вдоль неподвижной горизонтальной колосниковой решетки специальной планкой особой формы, движущейся возвратно-поступательно по колосниковому полотну.

Применяют их для сжигания бурых углей под котлами паропроизводительностью до 6,5 т/ч. Разновидностью топки с шурующей планкой является факельно-слоевая топка системы проф. С. В. Татищева, получившая применение для сжигания фрезерного торфа под котлами паропроизводительностью до 75 т/ч. Она отличается от обычной топки с шурующей планкой наличием шахтного предтопка, в котором происходит предварительная подсушка фрезерного торфа дымовыми газами, засасываемыми в шахту специальным эжектором. В этой топке можно также сжигать бурые и каменные угли.

В топках с наклонной колосниковой решеткой и скоростных топках системы В. В. Померанцева топливо, поступив в топку сверху, при сгорании сползает под действием силы тяжести в нижнюю часть топки, позволяя поступать в топку новым порциям топлива. Эти топки применяют для сжигания древесных отходов под котлами паропроизводительностью от 2,5 до 20 т/ч, а шахтные топки и для сжигания кускового торфа – под котлами паропроизводительностью до 6,5 т/ч.

В связи с особенностями топливного баланса России, в котором используют в основном каменные и отчасти бурые угли, больше всего распространены топки с забрасывателями и механические цепные решетки. Топки же, предназначенные для сжигания торфа, сланцев и древесины, распространены значительно меньше, так как топливо этих видов в топливном балансе России играет второстепенную роль.

– газообразное топливо не требует какой-либо предварительной подготовки;

Топливо. Виды топлива и устройства для его сжигания

– твердое топливо должно быть предварительно размолото в тонкий порошок в особых пылеприготовительных установках, основным элементом которых являются углеразмольные мельницы; 

– жидкое топливо должно быть распылено на очень мелкие капли в специальных форсунках.

Жидкое и газообразное топливо сжигают под котлами любой паропроизводительности, а пылевидное топливо – под котельными агрегатами паропроизводительностью начиная от 35-50 т/ч и выше.

Сжигание в факельном процессе топлива каждого из трех видов отличается конкретными особенностями, но общие принципы факельного способа сжигания остаются одинаковыми для всякого топлива.

Факельная топка (рис. 4) представляет собой прямоугольную камеру 1, выполненную из огнеупорного кирпича, в которую через горелки 2 вводят в тесном контакте топливо и воздух, необходимый для его горения, то есть топливо-воздушную смесь. Эта смесь воспламеняется и сгорает в образовавшемся факеле. Газообразные продукты сгорания покидают топку в ее верхней части.

Рис. 4. Схемы камерных топок: a – однокамерная топка для пылевидного топлива с твердым шлакоудалением; б – однокамерная топка для пылевидного топлива с жидким шлакоудалением; в – топка для жидкого и газообразного топлива; г – топка с полуоткрытой топочной камерой для сжигания пылевидного топлива

Топливо. Виды топлива и устройства для его сжигания

Стены топочной камеры изнутри покрывают системой охлаждаемых водой труб – топочными водяными экранами. Эти экраны имеют назначение предохранить кладку топочной камеры от износа и разрушения под действием высокой температуры факела и расплавленных шлаков, но главное – они представляют собой эффективную поверхность нагрева, воспринимающую большое количество тепла, излучаемого факелом. Поэтому эти топочные экраны становятся очень эффективным средством охлаждения дымовых газов в топочной камере.

Факельные топки для пылевидного топлива разделяют на два класса по способу удаления шлака: а) топки с удалением шлака в твердом состоянии; б) топки с жидким шлакоудалением.

https://www.youtube.com/watch?v=upload

Камера 1 топки с удалением шлака в твердом состоянии (рис. 4, а) ограничена снизу шлаковой воронкой 3, стенки которой защищены экранными трубами. Эта воронка получила название «холодной». Капли шлака, выпадающие из факела, попадая в эту воронку, вследствие относительно низкой температуры среды в ней затвердевают, гранулируясь в отдельные зерна.

Камера 1 топки с жидким шлакоудалением (рис. 4, б) ограничена снизу горизонтальным или слегка наклонным подом 3, вблизи которого в результате тепловой изоляции нижней части топочных экранов поддерживают температуру, превышающую температуру плавления золы. В результате этого шлак, выпавший из факела на этот под, остается в расплавленном состоянии и вытекает из топки через летку 4 в шлакоприемную ванну 5, наполненную водой, где, затвердевая, растрескивается на мелкие стекловидные частицы.

Оцените статью
Дачник
Adblock detector